
Computer Networks 166 (2020) 106980

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Machine learning-driven service function chain placement and scaling

in MEC-enabled 5G networks

�

Tejas Subramanya

a , ∗, Davit Harutyunyan

a , Roberto Riggio

a

FBK CREATE-NET, Via Alla Cascata 56/C, Trento 38123, Italy

a r t i c l e i n f o

Article history:

Received 15 August 2019

Revised 29 October 2019

Accepted 4 November 2019

Available online 5 November 2019

Keywords:

Auto-scaling

Service function chain placement

Machine learning

Neural-networks

Multi-access edge computing

a b s t r a c t

5G mobile network technology promises to deliver unprecedented ultra-low latency and high data rates,

paving the way for many novel applications and services. Network Function Virtualization (NFV) and Multi-

access Edge Computing (MEC) are two of the technologies that are expected to play a pivotal role in 5G to

achieve ambitious Quality of Service requirements of such applications. While NFV provides flexibility by

enabling network functions to be dynamically deployed and inter-connected to realize Service Function

Chains (SFC), MEC brings the computing capability to the edges of the mobile network thus reducing

latency and alleviating the transport network load. However, adequate mechanisms are needed to meet

the dynamically changing network service demands, to optimally utilize the network resources while, at

the same time, making sure that the end-to-end latency requirement of services is always satisfied.

In this work, we first propose machine learning models, in particular neural-networks, that can perform

auto-scaling by predicting the required number of virtual network function instances based on the traffic

demand, using the traffic traces collected over a real-operator commercial network. We then employ In-

teger Linear Programming (ILP) techniques to formulate and solve a joint user association and SFC place-

ment problem, where each SFC represents a service requested by a user with end-to-end latency and data

rate requirements. Finally, we propose a heuristic to address the scalability concern of the ILP model.

© 2019 Elsevier B.V. All rights reserved.

1

p

c

a

T

n

m

Q

p

t

E

z

8

r

a

(

(

m

a

e

r

C

t

w

(

a

e

i

h

1

. Introduction

The 5 th generation of mobile networks is expected to sup-

ort high data rates, extremely low-latency, high reliability, the

apability to extend access to distributed computation and stor-

ge facilities in addition to connectivity and bandwidth [1] .

hese characteristics of the 5G systems open the door for many

ovel Ultra-reliable low-latency (URLLC) applications such as aug-

ented/virtual reality and autonomous driving, whose ambitious

uality of Service (QoS) requirements cannot be satisfied by the

reprocessors of the 5G networks. Therefore, the 5G architec-

ure needs to incorporate new technologies such as Multi-access

dge Computing (MEC) [2] and Network Function Virtualization
� This work has been performed in the framework of the European Unions Hori-

on 2020 project 5G-CARMEN co-funded by the EU under grant agreement No

25012. The views expressed are those of the authors and do not necessarily rep-

esent the project. The Commission is not liable for any use that may be made of

ny of the information contained therein.
∗ Corresponding author.

E-mail addresses: t.subramanya@fbk.eu (T. Subramanya), d.harutyunyan@fbk.eu

D. Harutyunyan), rriggio@fbk.eu (R. Riggio).

w

e

t

i

g

o

a

s

e

ttps://doi.org/10.1016/j.comnet.2019.106980

389-1286/© 2019 Elsevier B.V. All rights reserved.
NFV) [3] , to meet the insatiable data rate and low-latency require-

ents of the applications mentioned above [4] .

The basic idea of MEC is to bring computing capabilities and

pplications closer to the end-users, from cloud data centers to the

dges of the cellular network, therefore, reducing the delay expe-

ienced by the users and alleviating the transport network load.

onsequently, the ETSI MEC Industry Specification Group proposes

hree possible MEC deployment options in 5G networks, collocated

ith the gNodeB (gnb.mec) or collocated with an aggregation point

 ap.mec) or collocated with the 5G core network (5 gc.mec) [5] ,

s shown in Fig. 1 . The closer the MEC nodes are towards the

nd-users, the scarcer their computational resources become. It is

mportant to mention that the integration of MEC into 5G net-

ork requires the collocation of a User Plane Function (UPF) el-

ment with each MEC node to reap the benefits of the MEC sys-

em [5] . The functionality of the UPF in MEC systems is illustrated

n Section 2 , together with other relevant concepts and terminolo-

ies in 5G mobile network.

NFV, on the other hand, decouples network functions (e.g., UPF)

r MEC applications from their dedicated proprietary hardware

nd deploys them as virtualized software entities on commodity

ervers [6] . In our work, we use the generic term VxF to refer to

ither UPF virtualized network function (VNF) or virtualized MEC

https://doi.org/10.1016/j.comnet.2019.106980
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2019.106980&domain=pdf
mailto:t.subramanya@fbk.eu
mailto:d.harutyunyan@fbk.eu
mailto:rriggio@fbk.eu
https://doi.org/10.1016/j.comnet.2019.106980

2 T. Subramanya, D. Harutyunyan and R. Riggio / Computer Networks 166 (2020) 106980

Fig. 1. An example of a distributed MEC-NFV System Architecture.

i

n

i

t

m

m

t

r

n

m

c

d

m

e

U

c

p

l

i

d

s

a

d

3

t

g

m

m

r

p

i

2

c

c

b

N

c

w

p

t

l

(

t

Fig. 2. 5G mobile network overview.
application function (VMAF). VxFs require a specific computational

capacity (e.g., CPU) to be instantiated and can be chained together,

forming a Service Function Chain (SFC) that represents a specific

service, with a guaranteed latency and data rate requirements, that

can be requested by User Equipments (UEs). As shown in Fig. 1 ,

there are multiple locations (e.g., gnb.mec, ap.mec, 5gc.mec) for in-

stantiating VxFs, which can be shared by many UEs.

In the described network scenario, given the UEs with their

SFC demands, the natural question that arises is how to asso-

ciate UEs, place their SFCs, allocate sufficient VxF instances and re-

sources to make sure that the UEs SFC requirements are satisfied

while the network resources are used efficiently? Moreover, the

mobility patterns of UEs result in non-uniform traffic distribution

within the mobile network [7] . Consequently, the number of VxF

instances required to manage load variations and to meet perfor-

mance guarantees is expected to fluctuate frequently. Towards this

end, auto-scaling of VxFs, in addition to UEs association and their

SFC placement, is thought to be an essential requirement for suc-

cessful management and orchestration (MANO) of resources and

services in 5G networks.

Most of the existing literature address either the problem of

VxF autoscaling [8] or the placement of SFC in distributed MEC

nodes [9] . In this paper, we first advocate that VxFs of SFC has to

be proactively scaled in synergy with varying network traffic dy-

namics to avoid service disruption. Based on those scaling deci-

sions, the VxFs need to be dynamically placed in distributed MEC

nodes, to minimize end-to-end latency and to meet data rate re-

quirements. To the best of our knowledge, we are the first to ad-

dress the combined challenges in VxF auto-scaling and placement

of SFCs within a distributed MEC-NFV environment, based on the

real-operator mobile network traces. This work has three main

contributions (also as depicted in Fig. 1) compared to our previ-

ous work [10] :

(i) Our previous work just considered a neural-network-based

Multi-layer Perceptron (MLP) classifier model to estimate the re-

quired number of UPF instances as a function of the network traf-

fic they should process in each base station. In this extended work,

we also consider the neural-network-based MLP regressor model to

perform the same objective, and we analyze the performance of

both models. Additionally, our previous work only examined the

QoS-prioritized neural-network model while in this work, we also

examine the cost-prioritized neural-network model and compare

the performance of both methods. The output from the best per-

forming MLP model i.e., ’the number of UPF instances’ is fed as an
nput to the Integer Linear Programming (ILP) model. It is to be

oted that the 5G mobile network dataset employed in our model

s obtained by a commercial operator in Armenia.

(ii) Our previous work used the ILP technique to solve solely

he VxF (not SFC) placement problem with specific latency de-

ands as requested by UEs. However, the delay values used in our

odel were static values based on other similar works, and also

he model did not consider UE associations to gNodeBs and their

equested data rates. In this extended work, we employ ILP tech-

ique to formulate and solve a ’joint UE association and SFC place-

ent problem’ , where each SFC is composed of several VxFs inter-

onnected through virtual links, with specific latency and data rate

emands as requested by UEs positioned in diverse areas of the 5G

obile network. Furthermore, we also develop a comprehensive

nd-to-end latency model considering radio delay (comprised of

E processing delay, over-the-air transmission delay, gNodeB pro-

essing delay, scheduler queuing delay, and Hybrid automatic re-

eat request (HARQ) retransmission delay), backhaul network de-

ay (comprised of propagation delay and transmission delay both

n Xn and NG interfaces as shown in Fig. 1), and SFC processing

elay for 5G mobile networks.

(iii) Our previous work did not propose any heuristic algorithm

ince the ILP model was simplistic while in this work, we propose

 heuristic algorithm with the same objective as that of ILP to ad-

ress the scalability problem of ILP.

The rest of this paper is organized as follows. Sections 2 and

 describes the necessary background and related work, respec-

ively. Section 4 describes the proposed MLP classifier and MLP re-

ressor models and evaluates their performance. In Section 5 , we

odel latency-optimal SFC placement problem while Section 6 for-

ulates the problem using ILP and also proposes a heuristic algo-

ithm. In Section 7 , we perform several experiments to evaluate our

roposed SFC placement solutions. Finally, we conclude the paper

n Section 8 .

. Background: 5G mobile network

In this section, we briefly introduce the 5G mobile network ar-

hitecture (see Fig. 2) and provide an overview of the basic con-

epts and terminologies in 5G. At a very high level, a 5G mo-

ile network is composed of two major elements: the 5G Access

etwork and the 5G Core Network (5GC). The 5G Access Network

omprises one logical node, the next-generation NodeB (gNodeB),

hich connects to the User Equipments (UEs), providing control

lane and user plane services. The gNodeBs are interconnected

o each other using the Xn interface. The 5GC consists of many

ogical nodes such as Access and Mobility Management Function

AMF), Session Management Function (SMF), and User Plane Func-

ion (UPF). The gNodeBs are connected to the 5G Core Network

T. Subramanya, D. Harutyunyan and R. Riggio / Computer Networks 166 (2020) 106980 3

t

c

i

u

w

R

1

s

t

i

u

c

G

f

G

(

o

a

T

c

t

t

e

H

c

O

r

3

a

E

t

t

i

h

f

d

t

a

3

c

d

s

t

r

i

r

f

q

i

o

a

i

t

a

f

r

e

t

a

a

p

t

t

s

d

3

l

fi

S

a

r

a

i

t

f

i

H

o

t

e

t

j

t

S

r

s

5

4

M

p

U

d

u

4

i

f

s

V

p

o

d

m

u

m

d

t

e

t

b
hrough NG interfaces, more specifically to the AMF through NG-C

ontrol plane interface and to the UPF1 through NG-U user plane

nterface. The components within the 5GC are also interconnected

sing standardized interfaces.

The scheduler entity in the gNodeB is responsible for deciding

hich UEs should be allocated air interface resources, i.e., Physical

esource Blocks (PRBs) on Transmission Time Interval (TTI) (e.g.,

 ms or 0.5 ms or 0.25 ms or 0.125 ms) basis and how much PRBs

hould be allocated to send or receive data. Once a UE attaches

o the network using control plane signaling (e.g., attach process),

t can send/receive data to/from the Packet Data Networks (PDN)

sing the GPRS Tunneling Protocol (GTP). The uplink UE traffic re-

eived by the gNodeB over its air interface is encapsulated into a

TP packet and then delivered to the UPF1 over the NG-U inter-

ace. This GTP tunnel is terminated at the UPF1 which removes the

TP header and forwards the UE traffic to its intended destination

e.g., the Internet).

Besides, consider a MEC node being placed in between the gN-

deB and the 5GC to support low-latency applications. For the MEC

pplications to operate, it needs to have access to the UE IP traffic.

herefore, the integration of MEC in the 5G network requires the

olocation of a UPF network function with the MEC node. The UPF

akes care of performing a stateful termination and recreation of

he GTP session concerning the UE. As we see in Fig. 2 , the GTP-

ncapsulated UE traffic is redirected from the gNodeB to the UPF2.

ere the GTP tunnel is terminated, and the UE IP traffic, now ac-

essible, is redirected to the MEC Node running MEC applications.

n the way back, the GTP tunnel is recreated by UPF2, and the

esponse is delivered back to the UE.

. State of the art

ETSI NFV Industry Specification Group defines network service

s a composition of one or more VNFs that are chained together.

ach VNF requires a specific amount of resource to process the

raffic flowing through it. To deploy a network service, the opera-

or needs to find the right placement of VNFs complying with var-

ous resource constraints and service latency agreements. Once the

osts are selected and the VNFs deployed, resource requirements

or the VNFs may vary due to traffic fluctuations. To meet these

emands, a resource allocation algorithm is needed that can au-

omatically allocate/release resources to a VNF (vertical scaling) or

dd/remove one or more VNF instances (horizontal scaling).

.1. Virtual network function auto-scaling.

Previous works on VNF auto-scaling can be divided into two

ategories: reactive mode and proactive mode.

In reactive mode, threshold levels can be either statically pre-

efined or dynamically updated. In [11–13] , the authors propose

calability mechanisms based on static thresholds. They define two

hreshold levels (scalein thr and scaleout thr) to determine if the load

educes below or exceeds above the respective limits and accord-

ngly trigger the scaling process. However, such techniques may

esult in an oscillating behaviour affecting the overall system per-

ormance. On the other hand, [14,15] propose mechanisms such as

ueuing theory and reinforcement learning, which allows the scal-

ng policy to be improved based on dynamic or adaptive thresh-

lds. Although it performs better than static approaches, it remains

 reactive solution with similar weaknesses.

In proactive mode, forecasting techniques (e.g., machine learn-

ng) are applied to allow the systems to automatically learn and

o anticipate future needs, based on which scalability decisions

re taken. For example, the authors in [16] propose a solution to

orecast CPU usage based on a historical dataset using time se-

ies model. Other authors such as Mijumbi et al. [17] and Mestres
t al. [18] addresses the problem of managing VNF resource fluc-

uations by predicting resource requirements using ML techniques

nd thereby enhancing the performance of the resource allocation

lgorithm.

In contrast to these works which targets data centers, our ap-

roach investigates the problem of proactive auto-scaling in a dis-

ributed MEC-NFV deployment. Moreover, we use real-operator

raffic traces to generate training sets required for predicting auto-

caling decisions, unlike other works that are based on simulated

atasets.

.2. Service function chain placement.

There already exists some literature on the SFC placement prob-

em with certain end-to-end latency needs that need to be satis-

ed [9] , [19] , and [20] . In [9] , the authors present a delay-aware

FC placement problem such that VxFs forming SFCs are placed so

s to satisfy end-to-end latency demands while utilizing network

esources in an effective manner. A joint VxF placement and CPU

llocation problem is studied in [19] and an optimization problem

s formulated by employing a queuing-based model to minimize

he ratio between the actual and the maximum allowed latency,

or all SFC requests. The authors in [20] study the problem of VxF

nstantiation and migration with a goal of minimizing SFC delays.

owever, all these studies do not consider UE processing time, gN-

deB processing time, and propagation or transmission time over

he air interface. Besides, none of the above studies consider het-

rogeneous MEC nodes, which increases the search space causing

he SFC placement problem to grow cumbersome.

In contrast to the above SFC placement solutions , we consider the

oint problem of user association and SFC placement which allows

he optimization of end-to-end latency according to user locations,

FC latency and data rate requirements, and computing/networking

esource availabilities. Furthermore, our proposed latency model

tands out from the existing delay models within the context of

G mobile network.

. Machine learning-driven proactive ’UPF’ auto-scaling

In this section, we create two types of neural-network based

LP models, a classifier and a regressor , that can identify and ex-

loit hidden patterns in network traffic load instances to predict

PF scaling decisions ahead of time. In particular, we illustrate on

ifferent steps involved in creating our models and eventually eval-

ate them based on several performance metrics [21] .

.1. Problem description

We investigate how to map traffic load statistics X to VNF scal-

ng decisions Y using supervised learning, which involves learning

rom a training set of data. The traffic load statistics X include mea-

urements from a commercial operator 5G mobile network. The

NF scaling decisions Y refer to the required number of UPFs to

rocess incoming traffic with an objective to either maximize QoS

r minimize cost. The details on the composition of X and Y are

iscussed in Section 4.4 .

The X and Y metrics evolve over time, influenced mainly by the

obile network traffic dynamics and the actual number of mobile

sers. Consequently, the combined evolution of X and Y metrics is

odeled as a time series {(x t , y t)}. Our goal is to determine the

istribution of scaling decision metric Y constrained on knowing

he traffic load metric x ∈ X .

Employing the statistical learning framework, X and Y are mod-

led as random variables. We assume that each sample (x t , y t) in

he training set is obtained from the conditional probability distri-

ution of (X, Y). Further, we suppose that x t is multi-dimensional

4 T. Subramanya, D. Harutyunyan and R. Riggio / Computer Networks 166 (2020) 106980

e

E

w

1

p

a

r

f

f

p

a

a

M

w

d

t

4

o

a

l

m

fi

fi

o

r

t
(multi-variate) and y t is one-dimensional (uni-variate). In this for-

malism, the inference problem consists of finding a model F :

x - > P (Y | x) for x ∈ X , so as to maximize the likelihood function

L ({ P (y t | x t)}), which can be attained by minimizing the loss/error

function.

In this work, a neural-network called Multilayer Perceptron

(MLP) is used to estimate the parameters of the model to pre-

dict the probability distribution P (Y | x). We select artificial neural-

network in our approach for three reasons:

(i) it has proven its potential in identifying traffic patterns due

to its effectiveness in predicting time-series problems, whether pe-

riodic or not [22] .

(ii) it can build new customized features through hidden layers

and fit nonlinear activation functions when a specific mathematical

definition is not available.

(iii) it can represent both linear, piecewise-linear and non-linear

relationships and learn these relationships directly from the data.

4.2. Multilayer perceptron (MLP)

An MLP is a class of feed-forward artificial neural network, con-

sisting of at least three layers of nodes (neurons): an input layer,

one or more hidden layers, and an output layer, as shown in Figs. 3

and 4 . These nodes are fully interconnected in the form of a di-

rected graph, starting from the input to the output. All nodes ex-

cept the input nodes have an associated activation function, which

is used to compute the node output based on the weighted in-

puts from other nodes. An MLP model is trained through a back-

propagation mechanism using gradient-descent as an optimization

algorithm, where the weights between the nodes are adjusted iter-

atively for minimizing the error function.

MLP Classifier. In classification, a relu activation function is

used for all hidden layer nodes, and a softmax activation function

is used for the output layer nodes. The output is a vector contain-

ing the probabilities that sample x ∈ X belongs to each class, which

is equivalent to a categorical probability distribution (as seen in

Fig. 3). The final result is the class with the highest probability.

With a categorical cross-entropy loss function, the network param-
Fig. 3. Structure of the MLP classifier model.

Fig. 4. Structure of the MLP regressor model.

m

t

s

b

i

d

w

a

m

a

w

a

4

e

4

c

b

o

a

s

a

ters are chosen to minimize the following:

 = −
C ∑

l=1

b x,l log (p x,l) (1)

here C is the number of classes, b is the binary indicator (0 or

) whether class label l is the correct classification for input x , and

 is the predicted probability that input x belongs to class l . Here,

 separate loss is calculated for each class label per input, and the

esult is the sum of all those losses.

MLP Regressor. In regression, a relu activation function is used

or all hidden layer nodes, and a linear activation function is used

or the output layer nodes. The output is a real-valued quantity

redicted based on the input sample x ∈ X (as seen in Fig. 4). With

 mean-squared-error (MSE) loss function, the network parameters

re chosen to minimize the following:

SE = 1 /n

n ∑

i =1

(Y a − Y p)
2 (2)

here n is a vector of predictions generated from a sample of n

ata points while Y a and Y p are the actual and predicted values of

he samples.

.3. Modeling MLP in keras

Keras is an open-source neural-network Python library capable

f running on top of Theano [23] or TensorFlow [24] . It is char-

cterized by a clean, uniform, and streamlined high-level API, al-

owing users to rapidly define, train, and evaluate neural network

odels [25] .

In Keras, the structure of the neural network model can be de-

ned in a modular way, as a sequence of standalone and fully con-

gurable modules, which can be readily plugged together. Keras

ffers several predefined neural layers such as a dense layer, a

ecurrent layer, and a convolutional layer. A wide range of ac-

ivation functions is also available including relu, sigmoid, soft-

ax, tanh, to name a few. Similarly, many predefined loss func-

ions (e.g., mean squared error, cross entropy) and regularization

chemes (e.g., dropout) are supported. Also, since Keras performs

ackpropagation automatically, users do not need to implement

t. Moreover, numerous approaches are available to partition the

ataset into training, validation, and test sets.

To implement an MLP in Keras, we construct a sequential model

ith a number of predefined dense layers and their corresponding

ctivation functions. We then configure the learning process of the

odel by choosing an optimizer, a loss function (Eq. (1) or Eq. (2)),

nd a list of metrics to be reported. Lastly, the model is trained

ith an objective to minimize the loss function and then evalu-

ted.

.4. Collecting data and feature engineering

The different steps that we followed in creating our MLP mod-

ls are as follows:

.4.1. Data collection

The dataset utilized in this work is generated from a commer-

ial operator by monitoring the mobile network traffic load on 6

ase stations, with each base station having 10 cells, for a period

f 8 consecutive days. The traces in the dataset are in the form of

 time series {(x t , y t)} and we interpret this time series as a set of

amples { (x 1 , y 1) , (x 2 , y 2) , . . . , (x n , y n) } . The traces are collected on

n hourly timescale.

T. Subramanya, D. Harutyunyan and R. Riggio / Computer Networks 166 (2020) 106980 5

Table 1

Default set of features available in the dataset.

Default features (X default)

1. gNodeB ID.

2. Date.

3. Time-stamp t .

4. Average number of users between t and t − 1 in each cell.

5. Maximum number of users between t and t − 1 in each cell.

6. Average downlink user throughput in each cell.

7. Average uplink user throughput in each cell.

8. Traffic load measured in each cell at time t , given by λ(t).

Table 2

Constructed set of features from the dataset.

Constructed features (X constructed)

9. Traffic load measured in each cell at time t − 1 , given by λ(t − 1) .

10. Traffic load measured in each cell at time t − 2 , given by λ(t − 2) .

11. Traffic load measured in each cell at time t − 3 , given by λ(t − 3) .

12. Traffic load measured in each cell at time t − 4 , given by λ(t − 4) .

13. Change in traffic load in each cell from time t to t − 1 .

14. Change in traffic load in each cell from time t − 1 to t − 2 .

15. Change in traffic load in each cell from time t − 2 to t − 3 .

16. Change in traffic load in each cell from time t − 3 to t − 4 .

17. Weekday or weekend.

4

w

c

r

t

(

p

t

o

s

4

r

t

t

b

t

f

v

t

f

f

f

Y

w

t

t

g

p

g

o

i

s

a

a

Y

w

t

m

t

i

t

t

i

d

4

b

’

P

b

k

a

u

o

d

r

l

l

d

d

v

u

9

l

F

T

1

t

n

a

p

m

n

n

(

r

4

t

d

6

r

(

a

t

s

t

w

e

a
.4.2. Feature extraction

We now describe the input feature sets X default and X constructed ,

hich, when combined, is referred to as X , as well as the output

lasses or real-valued quantities Y .

The X default feature set includes 8 numeric features that are al-

eady available in the dataset, as described in Table 1 . In addi-

ion to these default features, we construct 9 numeric features

 X constructed) from the basic dataset, as shown in Table 2 , using a

rocess called feature transformation by extending backward from

ime t . These constructed features contain information or patterns

n how the traffic load evolves, therefore assisting in proactive VNF

caling decisions.

.4.3. Definition of classes or real-valued quantity ’Y’

The next step is to define how we generate output classes or

eal-valued quantity Y , which the MLP classifier or regressor tries

o predict, respectively. In VNF autoscaling, there is a tradeoff be-

ween QoS and cost. More UPF instances (i.e., resources) need to

e allocated to guarantee QoS, but allocating more resources raises

he cost. Therefore, we propose two different approaches: (i) QoS

avored classifier/regressor (Q-classifier/Q-regressor) and Cost fa-

ored classifier/regressor (C-classifier/C-regressor).

In Q-classifier/Q-regressor, the network operator gives priority

o QoS over the cost. The autoscaling decision at step n considers

uture traffic demands until the next autoscaling step n + 1 . There-

ore, the class value or the target variable value is generated as

ollows:

 Q = min

(
v n f max , max

(
λ(t)

γ

))
∀ t ∈ { τ (n) , , τ (n + 1) }

(3)

here t are the timestamps containing traffic data samples be-

ween steps n and n + 1 (including τ (n) and τ (n + 1)), λ(t) is the

raffic load in a cell at time t, γ is the maximum traffic load a sin-

le UPF can handle, and vnf max is the maximum number of UPFs

er cell that can be hosted on the MEC node.

In C-classifier/C-regressor, the network operator chooses to ne-

lect short-lived bursty traffic between steps n and n + 1 to avoid

ver-provisioning of UPFs, therefore minimizing cost and endur-

ng short-lived degradations. Consequently, the autoscaling deci-

ion considers measured traffic load only at step n and at next
uto-scaling step n + 1 . Therefore, the class value or the target vari-

ble value is generated as follows:

 C = min

(
v n f max , max

(
λ(τ (n))

γ
,
λ(τ (n + 1))

γ

))
(4)

here τ (n) is the time at which step n occurs and τ (n + 1) is the

ime at which step n + 1 occurs.

It is to be noted that in our work, we examine the performance

etrics for Q-classifier, Q-regressor, C-classifier, and C-regressor for

wo cases: (i) autoscaling decisions performed on one hour time-

ntervals and (ii) autoscaling decisions performed on two hour

ime-intervals. Although our traffic traces are collected on hourly

ime intervals, our model is generic enough to handle lower time

nterval granularities (e.g., 5-min time interval data samples) and

ifferent auto-scaling steps (e.g., 1 hour, 5 hours).

.4.4. Feature subset selection

Next, we identify the dominant features from our feature list

ased on their influence on classification ’accuracy’ or regression

R-squared’ values using Recursive Feature Elimination (RFE) and

rincipal Component Analysis (PCA) techniques.

RFE is a greedy optimization technique that strives to find the

est performing feature subset. It repeatedly generates models and

eeps aside the best or the worst performing feature in each iter-

tion. The next model is constructed with the remaining features

ntil all the features are depleted. It then ranks the features based

n the order of their elimination. With MLP, it is difficult to un-

erstand which input features are relevant and which are not. The

eason being, each input feature has multiple coefficients that are

inked to it - each corresponding to one node of the first hidden

ayer. Additional hidden layers make it even more challenging to

ecide how big of an impact the input feature has on the final pre-

iction. Therefore, we apply the RFE technique on a linear support

ector machine model to find the optimal number of features and

se them in creating our MLP models. After ranking, features 8,

, 10, 11, and 12 are ranked highest, which implies that measured

oads closer to the scaling decision time are the crucial features.

eatures 2, 17, and 3 are ranked 2nd, 3rd, and 4th, respectively.

he rest of the features are ranked in the following order: 14, 15,

3, and 16. Finally, features 1, 4, 5, 6, and 7 are recommended not

o be used in the model (RFE returns ’false’).

We have also validated this observation using Principal Compo-

ent Analysis (PCA), a statistical method to find correlated features

nd their impact on classification and regression. In PCA, the first

rincipal component has the most notable variance, accounting for

uch of the variability in the data samples. Our PCA lists a combi-

ation of features 8, 9, 10, 11, and 12 as the first principal compo-

ent, indicating similar conclusions as RFE.

Based on the ranking of these features, we use only 12 features

eliminating 1, 4, 5, 6 and 7 from Table 1) that provides the best

esults for our MLP models.

.4.5. Dataset decomposition

Once data is collected and features extracted/selected,

he dataset is decomposed into training, validation and test

atasets. We use a rule-of-thumb decomposition conforming to

0%/20%/20% between the training, validation and test datasets,

espectively. The data samples chosen for training and validation

i.e., close to 6 days of data from 6 gNodeBs) are the most bal-

nced data in our dataset compared to samples from other days

hat were used for testing (close to 2 days). Even then, the training

amples are slightly imbalanced in classes/target real-valued quan-

ities which might result in overfitting the model (i.e., a condition

here a statistical model begins to output a random class or

rror value outside the original dataset), and therefore we look

t other performance metrics such as confusion matrix, precision,

6 T. Subramanya, D. Harutyunyan and R. Riggio / Computer Networks 166 (2020) 106980

Fig. 5. Comparision of the proposed MLP classifier models for VNF auto-scaling.

b

A

P

R

F

w

t

d

i

n

r

a

p

w

n

i

t

o

m

a

l

e

e

m

w

d

t

i

w

m

m

9

d

c

t

h

s

r

s
recall, and F1-score for MLP classifier and R-squared value for MLP

regressor, which can provide more insight into the performance

of our MLP models than traditional classification accuracy and

regression mean squared error, which are excellent measures only

if the datasets are entirely symmetric. Finally, if the performance

metrics indicate overfitting, the K fold cross-validation technique

can be used to generate multiple mini train-test splits to tune our

MLP models, which was not necessary in our case.

4.5. Classification and regression using neual networks

Finding the parameters of a neural-network model means

searching for the best hyper-parameters of the MLP that can make

the best predictions on the input. We applied grid search and

baby-sitting as search strategies to perform an extensive search on

the space of hyper-parameters to find the most accurate neural-

network classifier and regressor. This process included finding the

number of hidden layers and nodes, the batch size, the regu-

larization parameter, the learning rate of the optimizer, and the

number of epochs. We encountered the process of finding hyper-

parameters time-consuming and hard, which assures that this

topic still requires significant research. Our search space for finding

optimal hyperparameters for MLP models are as follows:

• Hidden layers: 1 to 5.

• Nodes in each hidden layer: 12 to 30 in intervals of 3.

• Optimizer: adam, SGD, RMSprop.

• Learning rate: 0.1, 0.01, 0.001.

• Batch size: 100 to 500 in intervals of 100.

• Number of epochs: 100 to 500 in intervals of 100.

We eventually found the architecture of the neural network that

performs best on our traffic load traces and is described as follows.

The structure includes one input layer with 12 nodes (i.e., one for

each input feature), three hidden layers with 12, 24 and 12 nodes,

respectively, and an output layer with 10 nodes for MLP classifier

(i.e., one for each output class) and 1 node for MLP regressor. The

regularization parameter used is 0.01, the optimizer is based on

stochastic gradient approach with a constant learning rate of 0.001,

the batch size is fixed to 100, and the number of epochs equals

300.

4.6. MLP Model evaluation

We consider that MEC nodes in proximity to the gNodeBs are

capable of hosting UPFs on their NFV infrastructure. We assume

the link bandwidth capacity to be 20 Gbps and each VNF can pro-

cess a maximum of 200 Mbps traffic without QoS degradation. We

consider horizontal VNF auto-scaling with each MEC node capa-

ble of hosting 10 0 (20 Gbps /20 0 Mbps) VNFs and v n f max = 10 , i.e., a

maximum of 10 VNFs can be hosted per cell. These assumptions

are derived based on the evaluations performed by authors in [26] .

If traffic load increases, additional VNF instances are deployed to

meet QoS/cost requirements, whereas if traffic load decreases, VNF

instances are removed to save operational expenses.

MLP Classifier. Once the MLP classifier models are created as

discussed before, a test dataset is used to assess the performance

of the model in predicting outcomes. The test outcomes can be

classified into four groups: True Positive (TP) and True Negative

(TN) are when the model correctly predicts actual positive and

negative instances, respectively. Whereas, False Positive (FP) and

False Negative (FN) are when the model makes incorrect predic-

tions for negative and positive actual instances, respectively. There-

fore, we consider four performance metrics to evaluate our MLP

classifier model: accuracy, precision, recall, and f-measure, as given
y Eqs. (5)–(8) , respectively.

ccuracy =

1

| C|
| C| ∑

i =1

T P i + T N i

T P i + T N i + F P i + F N i

(5)

 recision =

1

| C|
| C| ∑

i =1

T P i
T P i + F P i

(6)

ecall =

1

| C|
| C| ∑

i =1

T P i
T P i + F N i

(7)

 measure = 2 ∗ P recision ∗ Recall

P recision + Recall
(8)

here C is the number of classes in the MLP model.

Accuracy is the most intuitive performance measure that gives

he proportion of true predictions among the total number of pre-

ictions observed. However, accuracy is an excellent measure only

f the datasets are entirely symmetric, i.e., false positives and false

egatives are almost the same. Therefore, other performance met-

ics need to be considered when evaluating a model. Precision is

 measure of correctly predicted positive observations to the total

redicted positive observations. It is a good measure to determine

hen the cost of FP is high. In the case of VNF auto-scaling, a high

umber of FPs results in over-provisioning of resources leading to

ncreased operational costs. On the other hand, Recall is a measure

hat calculates how many of the actual positives are captured in

ur model by labeling it as positive. It is a good measure to deter-

ine when the cost of FN is high. In the case of VNF auto-scaling,

 high number of FNs results in under-provisioning of resources

eading to QoS degradation. Finally, F-measure is the weighted av-

rage of precision and recall, and it is used when there is an un-

ven class distribution.

Fig. 5 compares the performance of four proposed MLP classifier

odels: Q-classifier with scaling decisions every hour, Q-classifier

ith scaling decisions every two hours, C-classifier with scaling

ecisions every hour, and C-classifier with scaling decisions every

wo hours. We use 6912 samples for training, 2304 samples for val-

dation, and 2304 samples for testing. The Q-classifier/C-classifier

ith scaling decisions taken every hour outperforms other two

odels where scaling decisions are taken every two hours in all

easures with 96.2% accuracy, 95.6% precision, 96% recall, and

6.2% f-measure.

Tables 3 –5 reports the confusion matrix concerning the test

ata samples for Q-classifier/C-classifier models with scaling de-

isions every hour, Q-classifier model with scaling decisions every

wo hours, and C-classifier model with scaling decisions every two

ours, respectively. It gives a breakdown of predictions into a table

howing correct predictions (the diagonal) and the types of incor-

ect predictions made (what classes incorrect predictions were as-

igned). For example, if we observe Table 3 on the 2nd row, on 5

T. Subramanya, D. Harutyunyan and R. Riggio / Computer Networks 166 (2020) 106980 7

Table 3

Confusion matrix for the Q-classifier (1hr)/ C-classifier (1hr) models.

Class 1 2 3 4 5 6 7 8 9 10

1 685 9 0 0 0 0 0 0 0 0

2 5 384 6 0 0 0 0 0 0 0

3 0 6 404 7 0 0 0 0 0 0

4 0 0 7 280 6 0 0 0 0 0

5 0 0 0 3 206 8 0 0 0 0

6 0 0 0 0 9 101 3 0 0 0

7 0 0 0 0 0 2 70 5 0 0

8 0 0 0 0 0 0 4 43 3 0

9 0 0 0 0 0 0 0 3 30 0

10 0 0 0 0 0 0 0 0 1 14

Table 4

Confusion matrix for the Q-classifier (2hr) model.

Class 1 2 3 4 5 6 7 8 9 10

1 322 6 0 0 0 0 0 0 0 0

2 2 165 4 1 0 0 0 0 0 0

3 0 3 206 5 0 0 0 0 0 0

4 0 0 2 142 6 0 0 0 0 0

5 0 0 0 2 112 6 1 0 0 0

6 0 0 0 0 6 53 1 0 0 0

7 0 0 0 0 0 3 41 4 0 0

8 0 0 0 0 0 0 3 24 1 0

9 0 0 0 0 0 0 0 3 19 0

10 0 0 0 0 0 0 0 0 0 9

Table 5

Confusion matrix for the C-classifier (2hr) model.

Class 1 2 3 4 5 6 7 8 9 10

1 320 8 0 0 0 0 0 0 0 0

2 3 165 2 2 0 0 0 0 0 0

3 0 6 204 4 0 0 0 0 0 0

4 0 0 5 140 5 0 0 0 0 0

5 0 0 2 6 106 7 0 0 0 0

6 0 0 0 0 6 53 1 0 0 0

7 0 0 0 0 0 2 42 3 1 0

8 0 0 0 0 0 0 4 22 2 0

9 0 0 0 0 0 0 0 4 17 1

10 0 0 0 0 0 0 0 0 1 8

i

2

2

i

2

d

o

p

e

m

(

M

M

R

R

Fig. 6. Comparision of the proposed MLP regressor models for VNF auto-scaling.

w

o

c

a

s

t

m

r

d

e

r

b

t

u

g

i

t

o

u

i

m

p

g

c

s

e

f

r

m

s

v

n

r

r

m

m

g

g

s

t

i

c

c

s

r
nstances class 2 is misclassified as class 1, and on 6 instances class

 is misclassified as class 3. Similarly, if we observe Table 4 on the

nd row, on 2 instances class 2 is misclassified as class 1, and on 4

nstances class 2 is misclassified as class 3, and on 1 instance class

 is misclassified as class 4.

MLP Regressor. Once the MLP regressor models are created as

iscussed before, a test dataset is used to assess the performance

f the model in predicting outcomes. We implement four custom

erformance metrics in Keras to evaluate our MLP regressor mod-

ls: mean absolute error (MAE), mean squared error (MSE), root

ean squared error (RMSE), and R 2 -score, as given by Eqs. (9)–

12) .

AE =

1

n

n ∑

i =1

| Y a − Y p | (9)

SE =

1

n

n ∑

i =1

(Y a − Y p)
2 (10)

MSE =

√

1

n

n ∑

i =1

(Y a − Y p) 2 (11)

2
score = 1 −

∑

(Y a −Y p) 2 ∑

(Y −Y) 2
(12)
a m
here n is the number of test data samples, Y a is the actual value

f Y, Y p is the predicted value of Y, and Y m

is the mean value of Y.

MAE estimates the average magnitude of errors in a set of fore-

asts, without considering their direction (i.e., the average of the

bsolute values of differences between the forecast and the corre-

ponding observation). MSE measures the average of the squares of

he errors (i.e., the average squared difference between the esti-

ated values and the actual values). RMSE is a quadratic scoring

ule which measures the average magnitude of the error (i.e., the

ifference between the estimated values and the actual values are

ach squared and then averaged over the sample). Then, the square

oot of the average is estimated. Considering the errors are squared

efore they are averaged, the RMSE adds a relatively high weight

o big errors. Therefore, RMSE is most useful when large errors are

ndesirable. The RMSE is always larger or equal to the MAE, the

reater difference between them, the higher the variance in the

ndividual errors in the sample. If the RMSE is equal to the MAE,

hen all the errors are of the same magnitude. R 2 -score (Coefficient

f determination) represents the coefficient of how well the val-

es fit compared to the original values. The value from 0 to 1 are

nterpreted as percentages. The higher the value is, the better the

odel is. It is equivalent to the accuracy metric in classification

roblems.

Fig. 6 compares the performance of four proposed MLP re-

ressor models: Q-classifier with scaling decisions every hour, Q-

lassifier with scaling decisions every two hours, C-classifier with

caling decisions every hour, and C-classifier with scaling decisions

very two hours. We use 6912 samples for training, 2304 samples

or validation, and 2304 samples for testing. The Q-regressor/C-

egressor (1hr) performs the best among the four models in all

easures with 0.194 MAE, 0.0696 MSE, 0.194 RMSE and 98.43% R 2 -

core/accuracy. Moreover, considering that the MAE and the RMSE

alues are equal to each other, it is safe to say that the model has

o large errors in the required number of UPF predictions.

MLP Classifier vs MLP Regressor. Fig. 7 shows the prediction

esults of VNF auto-scaling (for a full day) on test dataset for most

eliable MLP classifier and MLP regressor models based on the

etrics mentioned earlier, where we display the prediction perfor-

ance on all six MEC nodes, aggregated over all 10 cells for each

NodeB. In the figure, the blue line represents the actual output

enerated from the dataset, the red line means the predicted VNF

caling decisions using Q-classifier/C-classifier (1hr) models, and

he brown line represents the predicted VNF scaling decisions us-

ng Q-regressor/C-regressor (1hr) models. As we can observe, both

lassifier and regressor models introduced in this study can ac-

urately follow the pattern of actual data, which point out the

trong predicting capability of our models. However, Q-regressor/C-

egressor (1hr) models (accuracy of 96.2%) perform slightly better

8 T. Subramanya, D. Harutyunyan and R. Riggio / Computer Networks 166 (2020) 106980

Fig. 7. Prediction results on the number of UPFs required at each MEC node based on the proposed MLP models.

Fig. 8. Comparison of Mean Absolute Error between the best performing MLP clas-

sifier and MLP regressor models.

fi

i

b

u

b

s

f

p

b

s

5

n

m

S

m

5

a

o

i

a
than Q-classifier/C-classifier (1hr) models (accuracy of 98.43% or

R 2 -score of 0.984).

Fig. 8 depicts the MAE between the actual and predicted val-

ues of VNF auto-scaling decisions on test dataset for best per-

forming MLP classifier and MLP regressor models calculated over

all six MEC nodes for each hour during the entire day. In the
gure, the red line represents the MAE for predicting VNF scal-

ng decisions using Q-classifier/C-classifier (1hr) models, and the

rown line represents the MAE for predicting scaling decisions

sing Q-regressor/C-regressor (1hr) models. The former performs

etter than the latter with respect to MAE throughout the day.

It is worth mentioning that the predicted UPF auto-scaling deci-

ions in Q-regressor/C-regressor (1hr) MLP model (i.e. the best per-

orming model) is used as input to evaluate the SFC placement model

resented in Section 5 . However, in doing so, we assume that UEs can

e associated and served by any of the cells of a candidate gNodeB, to

implify the problem.

. Latency-optimal SFC placement problem description and

etwork model

In this section, we first define the latency-optimal SFC place-

ent problem and then describe the 5G mobile network model,

FC request model, and UE association, scheduling and delay

odel employed in formulating the ILP problem.

.1. Problem statement

Consider a 5G mobile network, composed of six gNodeBs, two

ggregation points, and one 5GC, as depicted in Fig. 9 . A set

f three gNodeBs are interconnected to each other through Xn -

nterfaces. Using NG -interfaces, the six gNodeBs are served by two

ggregation points, and the 5GC serves both of these aggregation

T. Subramanya, D. Harutyunyan and R. Riggio / Computer Networks 166 (2020) 106980 9

Fig. 9. Substrate network topology and SFC requests.

p

o

o

s

w

h

e

M

l

M

c

n

M

t

o

r

m

t

c

p

n

d

M

b

e

S

t

h

t

o

b

a

l

p

(

p

c

q

m

p

c

5

g

t

n

a

s

n

i

i

t

a

o

c

e

r

n

t

a

p

5

q
oints. For simplicity, in the rest of this paper, we consider gN-

deB1, gNodeB2, gNodeB3, and AP1 belong to cluster 1 while gN-

deB4, gNodeB5, gNodeB6, and AP2 belong to cluster 2, as repre-

ented in Fig 9 . Each element in our network topology is equipped

ith a resource-constrained (e.g., CPU) MEC node that is capable of

osting SFCs composed of one or several VxFs (e.g., VMs, contain-

rs). We consider three feasible options for physically deploying

EC nodes in 5G networks, as defined by ETSI [5] , i.e., MEC col-

ocated with gNodeB, MEC collocated with aggregation point, and

EC collocated with 5GC. Furthermore, in the considered hierar-

hical network topology, we assume that the closer is the MEC

ode to UE, the less is its computational capacity (e.g., MEC1,

EC2, and MEC3 are identical nodes with least capacity, MEC7 has

he medium capacity, and MEC9 has the highest capacity).

Suppose the UE (e.g., autonomous car) is associated with gN-

deB2 and requests for an SFC with an end-to-end latency (i.e.,

eal-time, near real-time or non-real-time) and data rate require-

ents. The SFC requests considered in our work can be either of

he three types as depicted in Fig. 9 . Depending on the selected

ost function to be minimized, the network provider can choose to

lace the VxFs of the SFC requested by the UE on either the host

ode (i.e., MEC2) or any neighboring nodes (i.e., MEC1, MEC3) or

istant nodes (MEC7, MEC9) or cluster 2 nodes (i.e., MEC4, MEC5,

EC6, MEC8) by allocating sufficient network resources (e.g., CPU,

ackhaul bandwidth), efficiently, while also making sure that the

nd-to-end latency and data rate requirements of the requested

FC is always satisfied. In the first case, no additional delay is in-

roduced in the backhaul since the MEC node collocated with the

ost gNodeB is the one hosting the VxFs. Conversely, in the other

hree cases, backhaul delay is introduced to map the virtual link

nto a backhaul path, connecting the host gNodeB with a neigh-

oring MEC node or a distant MEC node or a MEC node from

 different cluster that is hosting VxFs. Formally, the problem of

atency-optimal SFC placement is stated as follows:

Given: a small 5G mobile network with gNodeBs, aggregation

oints, 5GC, MEC nodes, the scheduling capabilities of gNodeBs
e.g., PRBs, TTI duration, subcarrier spacing), the computational ca-

acity of each MEC node, the transport network topology with the

apacity of each backhaul link, the number of UEs and their re-

uested SFCs with an end-to-end latency and data rate require-

ents.

Find: ’where’ to allocate resources to VxFs and ’which’ network

aths to use.

Objective: minimize average end-to-end latency for UEs to ac-

ess their SFCs in the mobile network.

.2. 5G mobile network model

The mobile network infrastructure is modeled as an undirected

raph G net = (N net , E net) , where N net = N gnb.mec ∪ N ap.mec ∪ N 5 gc.mec is

he union of the set of | N gnb.mec | gNodeBs collocated with the MEC

ode, | N ap.mec | aggregation points collocated with the MEC node,

nd | N 5 gc.mec | 5GCs collocated with the MEC node and E net is the

et of backhaul links such that an edge e mn ∈ E net only if a con-

ection exists between m, n ∈ N net . Each network node m ∈ N net

s attributed with a weight w

net
cpu (m) , representing its CPU capac-

ty, under the assumption that one VxF requires one CPU unit

o be instantiated. Additionally, each network node m ∈ N gnb.mec is

lso associated with a weight w

gnb.mec

prb
(m) representing the number

f Physical Resource Blocks (PRBs) available at each timeslot that

an be scheduled to UEs for trasmitting data packets. Furthermore,

ach edge e mn ∈ E net is associated with a weight w

net
bw

(e mn) rep-

esenting its bandwidth capacity (in Gbps). Finally, each network

ode m ∈ N net is associated with a geographical location loc (m) (in

erms of (x, y) coordinates) and each network node m ∈ N gnb.mec is

ssociated with a coverage area cov (m). Table 6 summarizes all the

arameters used in the mobile network model.

.3. Service function chain request model

Let G req = (N req , E req) be a directed graph modeling the SFC re-

uests, where N req = N ue ∪ N s f c is the union of the set of | N ue | UEs

10 T. Subramanya, D. Harutyunyan and R. Riggio / Computer Networks 166 (2020) 106980

Table 6

Parameters in the mobile network model.

Notation Definition

G net Graph of the mobile network.

N net Set of all network nodes in G net .

N gnb.mec Set of gNodeBs collocated with the MEC node in G net .

N ap.mec Set of aggregation points collocated with the MEC node in G net .

N 5 gc.mec Set of 5GCs collocated with the MEC node in G net .

E net Set of all backhaul links in G net .

w

net
cpu (m) Computing capacity of the network node m ∈ N net .

w

gnb.mec

prb
(m) PRBs available for each timeslot at gNodeB m ∈ N gnb.mec .

w

net
bw

(e mn) Bandwidth capacity of the backhaul link e mn ∈ E net .

loc (m) Geographical location of the network node m ∈ N net .

cov (m) Coverage area of the gNodeB m ∈ N gnb.mec .

Table 7

Parameters in the SFC request model.

Notation Definition

G req Graph of the SFC association request.

N req Set of all UEs and their SFC requests in G req .

N ue Set of UEs in Greq .

Nsfc Set of all the SFCs in G req .

Nvnfs Set of all the VxFs available to compose an SFC.

E req Set of all virtual links in G req .

D E 2 E,max (u, s) Maximum acceptable end-to-end latency for a UE u ∈ N ue

on its requested service s ∈ N sfc .

Thr req (u, s) Requested data rate for a UE u ∈ N ue on the requested

service s ∈ N sfc .

loc (u) Geographical location of the UE u ∈ N ue .

d

D

w

a

O

s

n

c

b

i

μ

t

i

i

r

a

w

s

t

s

r

t

P

b

r

c

N

w

i

f

i

n

t

n

a

a

a

u

s

w

a

t

e

o

s

e

m

i

r

b

f

d
and | N sfc | the set of SFCs requested from the UEs and E req is the

set of virtual links between the UEs and their requested SFCs. Each

SFC s ∈ N sfc is composed of a UPF (i.e., for encapsulation and de-

capsulation of GPRS Tunnelling Protocol for the user plane (GTP-

U) of an UE requesting MEC services [5]) and one or more VMAFs

from a set of N vnfs . Each SFC s ∈ N sfc is characterized by a maximum

acceptable end-to-end latency (e.g., real-time, near real-time, non

real-time) represented by D E 2 E,max (u, s) and a minimum guaranteed

data rate denoted by Thr req (u, s) that needs to be satisfied. Each UE

u ∈ N ue is associated with a location loc (u) (in terms of (x, y) coordi-

nates). Table 7 summarizes the parameters used in the SFC request

model.

5.4. UE association, scheduling and delay model

In contrast to 4G technology where the goal is only to en-

hance the throughput of Mobile Broadband (MBB) services, 5G is

expected to support low-latency applications with end-to-end la-

tency constraints of 1 − 10 ms and error rates of 10 −3 to 10 −5 (e.g.,

connected cars). For cellular communicatons, two types of laten-

cies are defined in 3GPP: control-plane (C-plane) latency and user-

plane (U-plane) latency. The C-plane latency is the transition time

for the UE to switch from idle mode to connected mode including

the establishment of the user plane while U-plane latency is the

one-way delay required to transmit a data packet from the UE to

the mobile network (uplink) or vice-versa (downlink) [27] .

In this work, we consider only the U-plane latency for comput-

ing end-to-end delay (D E 2 E), since it is the major contributor that

is hindering the support of URLLC applications. D E 2 E is computed

from the time UEs start transmitting packets in uplink untill the

time they start being processed in MEC nodes. For a scheduled UE,

we assume we have 3 different communication delays contributing

to D E 2 E :

(i) Radio delay (D

ue,gnb

radio
) is the sum of UE processing delay

(t
proc
ue), over-the-air transmission delay (t TTI), gNodeB processing de-

lay (t
proc

gnb
), scheduler queuing delay (t q), and HARQ retransmission
elay, which is given by Eq. (13) ,

ue,air,gnb

radio
= t proc

ue + t T T I + t proc

gnb
+ t q

+2 .n harq (t proc
ue + t T T I + t proc

gnb
+ t q) (13)

here n harq is the number of HARQ retransmissions required to

chieve a BLER target of 10 −3 to 10 −5 . Similar to 3GPP, we adopt

rthogonal Frequency Division Multiplexing (OFDM) scheme. To

atisfy the latency requirements of URLLC, 3GPP also proposes

ew frame structures with shorter TTI durations and multiple sub-

arrier spacings. Scaling up the base subcarrier spacing of 15 kHz

y 2 μ (e.g., 30 kHz , 60 kHz , and 120 kHz), the TTI duration of 1 ms

s scaled down by 2 μ (e.g., 0.5 ms , 0.25 ms , and 0.125 ms), where

= { 1 , 2 , ., n } , enabling faster transmission and lower processing

ime [28] . In our model, we adopt a TTI duration of 0.25 ms result-

ng in a subcarrier spacing of 60 kHz for all URLLC UEs. The result-

ng t
proc
ue and t

proc

gnb
processing delays are 3 OFDM symbols and 1 TTI,

espectively, as measured in [29] . The scheduler queuing delay (t q),

s represented in Eq. (14) , is the sum of offset time (t offset) i.e., the

aiting time (~ 0 to 1 TTI) once the packet is ready for transmis-

ion until the beginning of the next TTI and the packet congestion

ime (t pktcon) i.e., if the scheduler does not have enough PRBs to

chedule a requested SFC packet in one TTI, the SFC packets may

emain in the gNodeB buffer for longer duration.

 q = t offset + t pktcon (14)

To determine t pktcon , we first need to determine the number of

RBs (N prb (u, s, m)) required for the SFC s ∈ N sfc of an UE u ∈ N ue to

e assigned by its associated gNodeB m ∈ N gnb.mec . Given the data

ate demand of the SFC s , the number of PRBs (N prb (u, s, m)) is

omputed according to Eq. (15) as given in 3GPP [30] :

 prb (u, s, m) =

T hr req (u, s) ∗ T
μ

s

12 ∗ 10

−6 ∗ N cc ∗ N mimo ∗ N mod ∗ s f ∗ R ∗ (1 − oh)

(15)

here, N cc is the number of aggregated component carriers, N mimo

s the number of MIMO layers, N mod is the modulation order (e.g., 2

or QPSK, 4 for 16QAM, 6 for 64QAM, 8 for 256QAM), sf is the scal-

ng factor, R is the code rate, oh is the overhead for control chan-

els, and T
μ

s = 10 −3 / (14 ∗ 2 μ) is the average OFDM symbol dura-

ion in a subframe for numerology μ (μ = 2 in our case) assuming

ormal cyclic prefix. Except for N mod and R , which are determined

s per the below three steps, all other parameters are predefined

ccording to the radio access capabilities:

SINR measurement : The UE u ∈ N ue measures the SINR value for

 reference signal coming from its associated gNodeB m ∈ N gnb.mec

sing Eq. (16) ,

inr(u, m) =

F m | l oc(u) −l oc(m) | α∑

m ′ � = m
F
m ′

| l oc(u) −l oc(m ′) | α + N (16)

here | loc(u) − loc(m) | is the distance between the UE u and its

ssociated gNodeB m , | loc(u) − loc(m

′) | is the distance between

he UE u and the neighbouring gNodeBs of m (m

′), α is a path loss

xponent between 2 and 6, F m

and F m

′ are fading random variables

f some distribution, and N is a constant noise term [31] .

CQI report : The UE u ∈ N ue maps the SINR value measured in

tep 1 to a CQI index from the mapping table in [32] , which is

xpected to be reported to the scheduler of its associated gNodeB

 ∈ N gnb.mec . It is to be noted that these mappings are not defined

n 3GPP but are vendor specific.

CQI to MCS mapping : The scheduler is now expected to map the

eported CQI index to an MCS index and determine the best com-

ination of modulation order (N mod) and code rate (R) to be used

rom the mapping table in [33] , resulting in a BLER target of 10 −5 .

Therefore, we have all the necessary parameters in Eq. (15) to

etermine the number of PRBs that must be assigned for an SFC

T. Subramanya, D. Harutyunyan and R. Riggio / Computer Networks 166 (2020) 106980 11

s

m

a

T

o

l

a

D

w

r

n

q

n

t

n

i

r

D

b

6

t

t

n

w

t

S

o

l

t

i

s

l

6

i

p

s

N

m

m

n

n

S

Table 8

Binary decision varibles.

Notation Definition

χu
m To show if u ∈ N ue is associated to gNodeB m ∈ N gnb.mec .

ϒu, v ,s
m To show if v ∈ N vnfs of s ∈ N sfc from u ∈ N ue is assigned to

m ∈ N net .

�u,s
m,n To show if virtual link between u ∈ N ue and s ∈ N sfc is

assigned to substrate link between m ∈ N net and

n ∈ nbr _ nodes (m) .

s

t

N

n

o

t

t

M

n

T

m

t

I

n

U

t

w

r

s

R

t

U

o

a

m

e

d

m

v

 ∈ N sfc requested by the UE u ∈ N ue to meet its data rate require-

ents. If the number of PRBs that needs to be assigned are not

vailable in a particular TTI, they will be assigned during the next

TI and so forth, adding up to the total t q latency (i.e., t pktcon = no.

f TTIs to schedule SFC packets ∗ TTI duration).

(ii) Backhaul delay (D

Xn,NG
bh

) is the sum of X n propagation de-

ay (t
prop
Xn

), X n transmission delay (t tx
Xn

), NG propagation delay (t
prop
NG

),

nd NG transmission delay (t tx
NG

), given by Eq. (17) ,

Xn,NG
bh

= t prop
Xn

+ t tx
Xn + t prop

NG
+ t tx

NG
(17)

here for a link e mn ∈ E net , t
prop
Xn

refers to the propagation time

equired to transmit SFC packets from node m ∈ N gnb.mec to

ode n ∈ N gnb.mec while t
prop
NG

refers to the propagation time re-

uired to transmit SFC packets from node m ∈ N gnb.mec to node

 ∈ N ap.mec | N 5 gc.mec . Similarly, t tx
Xn

and t tx
NG

refers to the transmission

ime required to transfer SFC packets from node m ∈ N gnb.mec and

ode m ∈ N ap.mec | N 5 gc.mec , to the outgoing link e mn , respectively.

(iii) SFC processing delay (D

s f c
mec) is the time required for all VxFs

n an SFC s ∈ N sfc to apply a specific network operation on the ar-

iving packets.

Therefore, D E 2 E is computed according to Eq. (18) .

 E2 E = D

ue,air,gnb

radio
+ D

Xn,NG
bh

+ D

s f c
mec (18)

It is to be noted that the same delay model can be used for

oth downlink and uplink direction.

. Problem formulation

Once, a batch of UE associations and its SFC requests arrive at

he substrate network, it is either approved and embedded onto

he network or it is denied. The embedding process includes both

ode and link mapping and is generally referred to as virtual net-

ork embedding problem which is proven to be NP-hard [34] . In

he node mapping stage, each virtual node (i.e., UEs, VxFs in the

FCs requested by UEs) is mapped to a substrate node (i.e., gN-

deBs, MEC nodes) while in the link mapping stage, each virtual

ink (i.e., the link between the UE and its requested SFC) is mapped

o a single substrate path (i.e. the path between the gNodeB host-

ng the UE and MEC nodes hosting the VxFs in the SFC). In both

tages, the constraints imposed on substrate nodes and substrate

inks must be satisfied.

.1. Integer linear programming

The proposed joint UE association and SFC placement problem

s formulated employing ILP techniques. Before starting the actual

roblem formulation, for each UE u ∈ N ue , we first determine the

et of candidate gNodeBs (N gnb.mec (u)) using Eq. (19) ,

 gnb.mec (u) = { m ∈ N gnb.mec | (| loc(u) − loc(m) |) ≤ cov (m) } (19)

Then, we find neighboring gNodeBs for each gNodeB

 ∈ N gnb.mec and neighboring MEC nodes for each MEC node

 ∈ N net using Eqs. (20) and (21) , respectively.

br _ gnbs (m) = { m

′ ∈ N gnb.mec | e m,m

′ ∈ E net } (20)

br _ nodes (m) = { m

′ ∈ N gnb.mec , m

′′ ∈ N ap.mec ,

×m

′′′ ∈ N 5 gc.mec | e m,m

′
, e m,m

′′
, e m

′′ ,m

′′′ ∈ E net } (21)

Next, we find the candidate MEC nodes that can host VxFs of

FC requested by UEs. For each VxF v of SFC s from the UE u , the
et of candidate MEC Nodes (N net (u, v , s)) can be defined according

o Eq. (22) .

 net (u, v , s) = { m ∈ N gnb.mec (u) , m

′ ∈ nbr _ gnbs (m) , m

′′ ∈ N ap.mec ,

×m

′′′ ∈ N 5 gc.mec | e m,m

′
, e m,m

′′
, e m

′′ ,m

′′′ ∈ E net } (22)

Thus, in our ILP model, either the UEs candidate gNodeB MEC

ode, or the gNodeB MEC node connected to the candidate gN-

deB MEC node, or the aggregation point MEC node connected to

he candidate gNodeB MEC node, or the 5GC MEC node connected

o the aggregation point MEC node serving the candidate gNodeB

EC node can host UEs SFC.

Now, we formulate the SFC placement problem with three bi-

ary decision variables, χu
m

, ϒu, v ,s
m

, and �u,s
m,n , as represented in

able 8 .

The objective function of the ILP, given in Eq. (23) , is to mini-

ize the overall end-to-end latency from all users to their respec-

ive SFCs.

LP : min [
∑

u ∈ N ue

∑

m ∈ N gnb.mec

χu
m

∗ D

ue,air,gnb

radio
(u, m)

+

∑

u ∈ N ue

∑

v ∈ N v n f s

∑

s ∈ N s f c

∑

m ∈ N net

ϒu, v ,s
m

∗ D

s f c
mec (u, v , s, m)

+

∑

u ∈ N ue

∑

s ∈ N s f c

∑

m ∈ N net

∑

n ∈ nbr _ nodes (m)

�u,s
m,n ∗ D

Xn,NG
bh

(u, s, m, n)] (23)

In Eq. (23) , D

ue,air,gnb

radio
(u, m) depends on the number of UEs that

eed to be scheduled in a given time slot by gNodeB m . For each

E u , we first find the sinr (u, m) from Eq. (16) and then calculate

he needed N prb (u, s, m) from Eq. (15) to transmit packets of SFC s

ith a particular size at a requested data rate (Thr req (s)). If the total

equired PRBs exceed the maximum available PRBs in the gNodeB,

ome UEs are scheduled in the next time slot, thus increasing the

adio delay for those UEs. Since the backhaul links, Xn and NG , in

he mobile network, D

Xn,NG
bh

(u, s, m, n) depends on the number of

Es sharing the same backhaul link.

We will now describe all node and link constraints imposed in

ur problem formulation. Constraint (24) ensures that each UE is

ssociated to only one gNodeB from its candidate set. ∑

 ∈ N gnb.mec (u)

χu
m

= 1 , ∀ u ∈ N ue (24)

Constraint (25) guarantees that each VxF of SFC requested from

ach UE is hosted by only one substrate MEC node from its candi-

ate set. ∑

 ∈ N net (u,s)

ϒu, v ,s
m

= 1 , ∀ u ∈ N ue ∀ s ∈ N

u
s f c ∀ v ∈ N

s
v n f s (25)

Constraint (26) guarantees that each VxF is at most shared by

 n f shared
max number of UEs.

∑

v ∈ N v n f s

ϒu, v ,s
m

≤ v n f shared
max , ∀ u ∈ N ue ∀ s ∈ N

u
s f c ∀ m ∈ N net (u, s)

(26)

12 T. Subramanya, D. Harutyunyan and R. Riggio / Computer Networks 166 (2020) 106980

Algorithm 1 Heuristic.

Require: G net , G req , and SFC latency budget [N s f c (rt) , N s f c (near _ rt) ,

N s f c (non _ rt)].

Ensure: User association and latency-optimal SFC placement.

Step 1. Find candidate gNodeBs for each UE and perform UE asso-

ciation.

1: for u in N ue do

2: cand _ gnb(u) ← 0

3: map _ gnb(u) ← 0

4: for m in N gnb.mec do

5: if | loc(u) − loc(m) | < = cov (m) then

6: cand _ gnb(u) ← m

7: end if

8: end for

9: map _ gnb(u) ← m from the list of cand _ gnb(u) with

max (sinr(u, m)) and enough PRBs available.

10: end for

Step 2. Find candidate MEC nodes for VxFs of each SFC from each

UE .

11: for u in N ue do

12: for s in N s f c do

13: for v in N s f c (u) do

14: cand _ mec(u, s, v) ← 0

15: for m in neighbours (map _ gnb(u)) do

16: cand _ mec(u, s, v) ← m

17: end for

18: end for

19: end for

20: end for

Step 3. Perform SFC placement for each UE .

21: for u in N ue do

22: for s in N s f c (rt) do /* real-time SFCs. */

23: for v in N s f c (u) do

24: map _ mec(u, s, v) ← 0

25: for m in cand _ mec(u, s, v) do

26: compute (D E2 E (u, s, m))

27: if D E2 E (u, s, m) < = D E 2 E ,max then

28: if inst(v) not in m or neighbours (m) then

29: map _ mec(u, s, v) ← m

30: end if

31: end if

32: alocate _ continuous _ path (u, s, m)

33: upd ate _ nod e _ and _ link _ resources ()

34: end for

35: end for

36: end for

37: end for

38: Repeat Step 3 for s in N s f c (near _ rt) and N s f c (non _ rt) .

U

w

M

U

a

a

s

O

t

c

i

o

N

i
Constraint (27) ensures that the amount of CPU resources allo-

cated to VxFs of SFCs adheres to the available CPU capabilities on

the substrate node. ∑

u ∈ N ue

∑

s ∈ N u
s f c

∑

v ∈ N s v n f s

ϒu, v ,s
m

≤ w

net
cpu (m) , ∀ m ∈ N net (27)

Constraint (28) makes sure that in each time slot gNodeBs can

associate UEs only if they have enough PRBs to meet the data rate

demand of the requested SFC by the UE. ∑

u ∈ N ue

∑

s ∈ N s f c

N prb (u, s, m) ∗ χu
m

≤ w

gnb.mec

prb
(m) , ∀ m ∈ N gnb.mec (28)

Flow constraint (29) enforces for each virtual link between UE

u ∈ N ue and its SFC s ∈ N sfc there exists a continuous path estab-

lished between the gNodeB to which the UE is associated and the

MEC node hosting the VxFs of SFC s . ∑

n ∈ nbr _ nodes (m)

(�u,s
n,m

− �u,s
m,n) = ϒu,s

m

− χu
m

, ∀ m ∈ N net , ∀ e u,s ∈ E req

(29)

Constraint (30) makes sure that virtual links are mapped onto

the backhaul substrate links in the mobile network, if and only if it

has enough bandwidth capacity to meet the link demand of virtual

links. ∑

u ∈ N ue

∑

s ∈ N s f c

T hr req (u, s)(�u,s
n,m

+ �u,s
m,n) ≤ w

net
bw

(e nm) ,

∀ m ∈ N net , ∀ n ∈ nbr _ nodes (m) , n < m (30)

Constraint (31) ensures that the end-to-end latency from the

UEs to its associated SFCs does not exceed the maximum accept-

able latency as requested by the UEs. ∑

m ∈ N gnb.mec

χu
m

∗ D

ue,air,gnb

radio
(u, m)

+

∑

m ∈ N net

∑

v ∈ N s v n f s

ϒu, v ,s
m

∗ D

s f c
mec (u, v , s, m)

+

∑

m ∈ N net

∑

n ∈ nbr _ nodes (m)

�u,s
m,n ∗ D

Xn,NG
bh

(u, s, m, n) ≤ D E 2 E ,max (u, s) ,

∀ u ∈ N ue , ∀ s ∈ N

u
s f c (31)

6.2. Heuristic

The above ILP formulation took 44 hours to associate 300 UEs

including their latency-sensitive SFC requests composed of a num-

ber of VxFs on a mobile network comprised of six gNodeBs, two

aggregation points, and one 5G core. The ILP was solved using ILOG

CPLEX solver on an Intel Core i7 laptop with 3GHz CPU and 16 GB

RAM. To address the issue of scalability in ILP, we propose a heuris-

tic algorithm, as seen in Algorithm 1 , that can solve the above as-

sociation/mapping problem in a couple of seconds. Similar to the

ILP-based algorithm, the objective of our heuristic algorithm is to

minimize the overall end-to-end latency from all UEs to their re-

quested SFCs.

In the first step (lines 1 − 10), the algorithm loops through all

the UEs to determine a set of candidate gNodeBs considering the

location of the UE, location of the gNodeB, and the coverage area

of the gNodeB, and then creates a list of cand _ gnb(u) for each UE.

Next, each UE is mapped to the gNodeB, among the cand _ gnb(u) ,

that measures the best signal quality (i.e., SINR) and also has suf-

ficient PRBs to host the UE.

In the second step (lines 11 − 20), the algorithm finds the can-

didate MEC nodes for each VxF of SFC requests received from all
Es, which is nothing but the union of the MEC node collocated

ith the host gNodeB of UE (determined from step 1) and all other

EC nodes connected directly or indirectly to the host gNodeB of

E through backhaul links. Another list of cand _ mec(u, s, v) is cre-

ted for each VxF of the SFC received from all UEs.

In the third step (lines 21 − 38), the algorithm begins mapping

ll VxFs of SFC requests with real-time latency requirements con-

idering cand _ mec(u, s) for each SFC, starting from gnb.mec nodes.

nce they run out of computing resources, the algorithm moves on

o ap.mec nodes, and finally on to 5 gc.mec nodes, if and only if the

omputed end-to-end latency (D E 2 E (u, s, m)) is less than the max-

mum acceptable end-to-end latency for that SFC (D E 2 E,max). More-

ver, if an instance of VxF is already mapped to the candidate MEC

ode the UE shares this VxF to realize its SFC instead of instantiat-

ng a new VxF. The heuristic then uses the shortest path algorithm

T. Subramanya, D. Harutyunyan and R. Riggio / Computer Networks 166 (2020) 106980 13

t

t

a

s

f

a

T

t

a

7

m

P

r

l

m

t

e

7

n

3

h

a

i

T

c

g

n

i

h

e

5

s

(

t

l

a

b

o

t

a

M

m

n

i

3

r

w

U

e

a

s

I

c

t

c

p

s

Fig. 10. CPU utilization of MEC nodes (Scenario 1).

7

t

o

o

5

t

o

g

S

s

o

o

C

r

i

r

C

s

t

o

I

U

V

a

n

C

p

l

t

V

→

U

h

s

M

u

m

h

t

i

h
o map the virtual link between the UE and its requested SFC onto

he substrate link between the gNodeB that the UE is associated to

nd the MEC node that the SFC is being hosted on. The VxFs of a

ingle SFC might be mapped on different MEC nodes, and there-

ore further caution is exercised during link mapping. The node

nd link computational resources are updated after each mapping.

he same process is repeated for other SFC requests with near-real-

ime and non-real-time latency requirements until all SFC requests

re mapped.

. ILP and Heuristic evaluation

The performance of the latency-optimal SFC placement ILP

odel is evaluated based on the simulations implemented in

ython. We then compare it to the implemented heuristic algo-

ithms performance. Real-operator network topology and realistic

atency values are used when modeling the simulation environ-

ent to produce realistic simulation results, which can better illus-

rate the benefits of placing SFCs composed of VxFs at the network

dges closer to the end-user.

.1. Simulation environment

A small cluster of 5G mobile network composed of 9 network

odes is considered in our simulation, as depicted in Fig. 9 . A set of

 gNodeBs are connected to each other through 20 Gbps Xn back-

aul links, while each of the three gNodeBs is connected to the

ggregation point using 20 Gbps NG backhaul links which in turn

s connected to the 5G core network using 50 Gbps backhaul links.

he number of aggregated component carriers is set to 4, and each

arrier has a bandwidth capacity of 20 MHz. We assume that the

NodeBs support 4 x 4 MIMO configuration. We then introduce MEC

odes at each of these 9 network nodes capable of hosting a lim-

ted number of VxFs. The MEC nodes collocated with gNodeBs each

ave 50 CPUs, the MEC nodes collocated with aggregation points

ach have 100 CPUs, and the MEC node collocated with 5GC has

00 CPUs.

Our simulations are carried out for two scenarios. In the first

cenario, we consider that SFC requests arrive in batches of 30 UEs

equally divided among real-time, near-real-time, and non-real-

ime) with each batch corresponding to 1 timeslot. In every times-

ot, the ILP considers the SFC requests received in previous batches

nd associates all the UEs and their SFC requests onto the mo-

ile network, considering the latency and data rate requirements

f each SFC. We consider 10 batches of SFC requests corresponding

o 300 UEs. In the second scenario, we consider that SFC requests

rrive according to the predicted number of UPF instances from our

LP neural-network model , as illustrated in Section 4 . The perfor-

ance of ILP is compared with our heuristic algorithm in both sce-

arios. Additionally, in both scenarios, we assume that each UPF

nstance corresponds to one UE and each SFC is composed of 2 or

 VxFs (1 UPF and 1 or 2 VMAF as depicted in Fig. 9) with 1 CPU

equired to instantiate every VxF. Furthermore, each UPF is shared

ith 5 UEs while each VMAF is shared among 2 UEs. Since the

Es considered in our model are URLLC UEs, we assume three cat-

gories of user-to-SFC one-way delay requirements, i.e., 1 ms , 2 ms ,

nd 5 ms . We assume that each UE is transmitting short packets of

ize 15 Kb every TTI and requests a minimum data rate of 200 Mbps .

n Section 5 , we discussed on how we calculate D

ue,air,gnb

Radio
. We cal-

ulate D

Xn,NG
bh

by dividing the total packet size generated from all

he UEs that are using the same backhaul link with the bandwidth

apacity of the link [35] . Finally, we calculate D

s f c
mec by dividing the

acket size that the VxFs of the SFC should process by the CPU

peed. We consider a CPU speed of 3 GHz with 64 bit processor.
.2. Simulation results

CPU Utilization: The CPU utilization is computed by dividing

he number of CPUs utilized in gnb.mec nodes or ap.mec nodes

r 5 gc.mec nodes once the VxFs are mapped to the total number

f CPUs available in all gnb.mec nodes or all ap.mec nodes or all

 gc.mec nodes, respectively.

Fig. 10 illustrates the CPU utilization of MEC nodes with respect

o the number of UEs for simulations carried out in scenario 1. We

bserve that up to ≈ 90 UEs, the ILP places most of the VxFs on

nb.mec nodes because of its proximity to UEs, irrespective of the

FC latency requirements, while some non-real-time VxFs that are

hared by UEs associated with cluster 1 (gNodeB1, gNodeB2 or gN-

deB3) and cluster 2 (gNodeB4, gNodeB5 or gNodeB6) are placed

n 5 gc.mec nodes. Only after gnb.mec nodes are depleted with their

PU resources (after 90 UEs), the ILP starts moving VxFs with near-

eal-time and non-real-time latency requirements initially placed

n gnb.mec nodes to ap.mec nodes and starts placing new SFCs with

eal-time latency requirements on gnb.mec nodes. Similarly, when

PU resources of ap.mec nodes are depleted (≈ 180 UEs) the ILP

tarts moving VxFs with non-real-time latency requirements ini-

ially placed in gnb.mec or ap.mec nodes to 5 gc.mec nodes. On the

ther hand, heuristic algorithm follows a similar pattern to that of

LP, but instead of placing non-real-time VxFs that are shared by

Es associated to cluster 1 and cluster 2 on 5 gc.mec nodes, those

xFs are initially placed on gnb.mec nodes, then on ap.mec nodes

nd finally on 5 gc.mec nodes(in this order depending on the MEC

odes resource availability). This is evident from Fig. 10 , where

PU utilization of gnb.mec nodes is always higher in heuristic com-

ared to that of ILP. However, this results in the increase of overall

atency for heuristic due to the users taking a long path to access

heir SFC services (e.g., if a user is associated to gNodeB2 and its

xFs are placed in gNB 6. mec , the path mapping could be gNodeB2

 AP1 → 5GC → AP2 → gNodeB6). Consequently, up to 180

Es, the CPU utilization of ap.mec and 5 gc.mec nodes are lower in

euristic compared to ILP.

Fig. 11 illustrates the CPU utilization of MEC nodes with re-

pect to time over one full day for the network considered in the

LP neural-network model (scenario 2). We observe that the CPU

tilization of gnb.mec nodes are always full, the ap.mec nodes are

ost of the time full except from 2:00 to 8:00 and 5 gc.mec nodes

ave low utilization during early morning (2:00 to 8:00) due to

he low number of UEs being active and the utilization gradually

ncreases during the day peaking late in the night (≈ 22:00). The

euristic follows a similar pattern to that of ILP, but as discussed

14 T. Subramanya, D. Harutyunyan and R. Riggio / Computer Networks 166 (2020) 106980

Fig. 11. CPU utilization of MEC nodes (Scenario 2).

Fig. 12. Xn-link (gNodeB-to-gNodeB) utilization (Scenario 1).

Fig. 13. NG-link (gNodeB-to-AP-to-5GC) utilization (Scenario 1).

Fig. 14. Xn-link (gNodeB-to-gNodeB) utilization (Scenario 2).

I

a

s

n

t

n

t

h

s

e

t

d

m

9

o

c

o

u

i

t

t

h

U

t
earlier VxFs shared by UEs belonging to different clusters are ini-

tially placed on gnb.mec nodes rather than on 5 gc.mec nodes like in

ILP. Therefore, CPU utilization for gnb.mec nodes are always higher

in heuristic compared to that of ILP, with a tradeoff being the in-

crease in overall latency.

Link utilization: Link utilization is calculated by dividing the

usage of either Xn or NG backhaul links by UEs for utilizing SFCs

in the MEC nodes to the total available capacity of the respective

links.

Figs. 12 and 13 illustrates, respectively, the Xn link utilization

and the NG link utilization as a function of the number of UEs for

experiments carried out in scenario 1. In Fig. 12 , we observe that

in ILP, irrespective of the number of UEs, the Xn link utilization

remains almost the same (< 3%), which is attributed to the fact

that ILP principally places the VxFs of UEs on the gnb.mec that is

currently serving the corresponding UE over the air interface in or-

der to minimize the end-to-end latency. However, we observe that

heuristic algorithm places VxFs of some UEs on gnb.mec nodes that

are currently not serving the corresponding UE over the air inter-

face, which leads to the usage of Xn links. After a certain point

(≈ 90 UEs in Fig. 12), the Xn link utilization remains almost the

same for heuristic since the capacity of all gnb.mec nodes are de-

pleted, and VxFs are placed on ap.mec or 5 gc.mec nodes there on.
n Fig. 13 , we can observe that both in ILP and heuristic NG links

re least utilized up to ≈ 90 UEs since most VxFs of SFCs, irre-

pective of their latency demands, are always placed on gnode.mec

odes until then. Once gnode.mec nodes are out of CPU resources,

he VxFs of SFCs are moved to ap.mec nodes and later to 5 gc.mec

odes considering the latency requirements of SFCs, resulting in

he significant usage of NG backhaul links. However, the reason for

igher NG link utilization in heuristic is attributed to the fact that

ome UEs take longer routes, from cluster 1 to cluster 2 or vicev-

rsa, in order to access their SFC which is not the case in ILP.

Fig. 14 and Fig. 15 illustrates, respectively, the Xn link utiliza-

ion and the NG link utilization with respect to time over one full

ay based on the network considered in the MLP neural-network

odel (Scenario 2). Since the number of UEs is always more than

0, we observe that both ILP and heuristic algorithm places VxFs

f some UEs on gnb.mec nodes that are currently not serving the

orresponding UE over the air interface which leads to the usage

f Xn links as already explained in Scenario 1. Likewise, NG link

tilization for both ILP and heuristic is lowest during early morn-

ng (2:00 to 8:00) due to the low number of UEs being active and

he utilization gradually increases during the day peaking late in

he night (≈ 22:00). However, both Xn and NG link utilizations in

euristic are higher compared to ILP because of the long path the

Es take to access SFC like we discussed before.

Average end-to-end latency: Fig. 16 compares the average user-

o-sfc end-to-end delay for ILP and heuristic for Scenario 2 ex-

T. Subramanya, D. Harutyunyan and R. Riggio / Computer Networks 166 (2020) 106980 15

Fig. 15. NG-link (gNodeB-to-AP-to-5GC) utilization (Scenario 2).

Fig. 16. Average D E 2 E based on the predicted number of UPFs from the MLP classi-

fier model (Scenario 2).

p

c

p

t

n

c

l

a

s

p

g

p

a

o

s

8

t

t

a

V

e

a

f

fi

r

M

c

b

c

a

a

p

c

u

r

c

a

u

r

t

M

t

o

p

D

c

i

R

eriments. Like we already discussed, UEs belonging to different

lusters share some VxFs. The ILP produces an optimal solution by

lacing such VxFs at 5 gc.mec nodes to minimize the overall user-

o-sfc delay, but the heuristic initially places such VxFs on gnb.mec

odes, and therefore some UEs take the longer path (e.g., from

luster 1 to cluster 2) to access their SFC resulting in increased

atency. Therefore, ILP performs better than heuristic in terms of

verage end-to-end delay between, as seen in Fig 16 .

Execution time: The above ILP formulation took 44 hours to as-

ociate 300 UEs including their latency-sensitive SFC requests com-

osed of a number of VxFs on a mobile network comprised of six

NodeBs, two aggregation points, and one 5G core. Therefore, we

roposed a heuristic algorithm that performs a comparable associ-

tion and mapping in a couple of seconds except with sub-optimal

utcomes. Both ILP and heuristic were solved using CLOG IPLEX

olver on an Intel Core i7 laptop with 3GHz CPU and 16 GB RAM.

. Conclusions

The first part of the paper aims at applying machine learning

echniques to optimize network management operations. Towards

his end, we proposed two neural-network based MLP models (i.e.,

 classifier and a regressor) to facilitate proactive auto-scaling of
NFs, based on the traffic traces obtained from a commercial op-

rator. We evaluated the proposed models for its effectiveness in

ccurately predicting the amount of UPF instances required as a

unction of the network traffic it should process. For MLP classi-

er, we measured accuracy, precision, recall, F-measure, and finally

eported confusion matrix, while for MLP regressor we measured

SE, MAE, RMSE, and R 2 -score. Our results show that both MLP

lassifier and MLP regressor models have strong predicting capa-

ility for auto-scaling. However, MLP regressor outperforms MLP

lassifier in terms of accuracy.

In the second part of the paper, we solve a joint UE associ-

tion and SFC placement problem aiming to minimize the over-

ll user-to-sfc end-to-end latency. We have seen that the ILP im-

roves QoS of all UEs by initially placing their SFCs in MEC nodes

loser to gNodeBs (gnb.mec) and thereby reducing NG backhaul link

sage. Once the gnb.mec node CPU resources are depleted, near-

eal-time and non-real-time SFCs are moved/placed in MEC nodes

loser to aggregation points and 5GC which results in increased us-

ge of Xn and NG backhaul links. We evaluated the proposed model

sing simulations based on real-operator network topology and

eal-world latency values. Our results show that the average end-

o-end latency reduces significantly when SFCs are placed at the

EC nodes according to their latency and data rate demands. Fur-

hermore, we propose an heuristic algorithm to address the issue

f scalability in ILP, that can solve the above association/mapping

roblem in seconds rather than hours.

eclaration of Competing Interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.

eferences

[1] A. Gupta , R.K. Jha , A survey of 5g network: architecture and emerging tech-

nologies, IEEE Access 3 (2015) 1206–1232 .
[2] Q. V. Pham, F. Fang, V. N. Ha, M. Le, Z. Ding, L. B. Le, W. J. Hwang, A Survey

of Multi-Access Edge Computing in 5G and Beyond: Fundamentals, Technology
Integration, and State-of-the-Art. arXiv: 1906.08452 (2019) .

[3] R. Mijumbi , J. Serrat , J.-L. Gorricho , N. Bouten , F. De Turck , R. Boutaba , Network

function virtualization: state-of-the-art and research challenges, IEEE Commun.
Surv. Tutor. 18 (1) (2015) 236–262 .

[4] I.F. Akyildiz , S. Nie , S.-C. Lin , M. Chandrasekaran , 5G roadmap: 10 key enabling
technologies, Comput. Netw. 106 (2016) 17–48 .

[5] MEC in 5G networks, Whitepaper, ETSI, 2018.
[6] Network Functions Virtualization (NFV), Whitepaper, ETSI, 2017.

[7] I. Farris , T. Taleb , H. Flinck , A. Iera , Providing ultra-short latency to user-cen-

tric 5g applications at the mobile network edge, Trans. Emerg. Telecommun.
Technol. 29 (4) (2018) e3169 .

[8] E. Casalicchio , L. Silvestri , Mechanisms for sla provisioning in cloud-based ser-
vice providers, Comput. Netw, 57 (3) (2013) 795–810 .

[9] A. Alleg , T. Ahmed , M. Mosbah , R. Riggio , R. Boutaba , Delay-aware vnf place-
ment and chaining based on a flexible resource allocation approach, in: 13th

International Conference on Network and Service Management (CNSM), IEEE,

2017, pp. 1–7 .
[10] T. Subramanya , R. Riggio , Machine learning-driven scaling and placement of

virtual network functions at the network edges, in: 5th International Confer-
ence on Network Softwarization, 2019, 2019 .

[11] S. Dutta , T. Taleb , A. Ksentini , Qoe-aware elasticity support in cloud-native
5g systems, in: IEEE International Conference on Communications (ICC), IEEE,

2016, pp. 1–6 .

[12] G.A. Carella , M. Pauls , L. Grebe , T. Magedanz , An extensible autoscaling engine
(ae) for software-based network functions, in: 2016 IEEE Conference on Net-

work Function Virtualization and Software Defined Networks (NFV-SDN), IEEE,
2016, pp. 219–225 .

[13] M.M. Murthy , H. Sanjay , J. Anand , Threshold based auto scaling of virtual ma-
chines in cloud environment, in: IFIP International Conference on Network and

Parallel Computing, Springer, 2014, pp. 247–256 .
[14] C.H.T. Arteaga , F. Rissoi , O.M.C. Rendon , An adaptive scaling mechanism for

managing performance variations in network functions virtualization: A case

study in an nfv-based epc, in: 2017 13th International Conference on Network
and Service Management (CNSM), IEEE, 2017, pp. 1–7 .

[15] T. Lorido-Botran , J. Miguel-Alonso , J.A. Lozano , A review of auto-scaling tech-
niques for elastic applications in cloud environments, Journal of grid comput-

ing 12 (4) (2014) 559–592 .

http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0001
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0001
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0001
http://arxiv.org/abs/1906.08452
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0002
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0002
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0002
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0002
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0002
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0002
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0002
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0003
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0003
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0003
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0003
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0003
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0006
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0006
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0006
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0006
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0006
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0007
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0007
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0007
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0008
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0008
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0008
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0008
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0008
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0008
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0009
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0009
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0009
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0010
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0010
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0010
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0010
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0011
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0011
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0011
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0011
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0011
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0012
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0012
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0012
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0012
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0013
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0013
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0013
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0013
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0014
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0014
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0014
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0014

16 T. Subramanya, D. Harutyunyan and R. Riggio / Computer Networks 166 (2020) 106980

A

c

o

o

[16] A. Bilal , T. Tarik , A. Vajda , B. Miloud , Dynamic cloud resource scheduling in vir-
tualized 5g mobile systems, in: 2016 IEEE Global Communications Conference

(GLOBECOM), IEEE, 2016, pp. 1–6 .
[17] R. Mijumbi , S. Hasija , S. Davy , A. Davy , B. Jennings , R. Boutaba , Topolo-

gy-aware prediction of virtual network function resource requirements, IEEE
Trans. Netw. Serv. Manage. 14 (1) (2017) 106–120 .

[18] A . Mestres , A . Rodriguez-Natal , J. Carner , P. Barlet-Ros , E. Alarcón , M. Solé,
V. Muntés-Mulero , D. Meyer , S. Barkai , M.J. Hibbett , et al. , Knowledge-defined

networking, ACM SIGCOMM Comput. Commun. Rev. 47 (3) (2017) 2–10 .

[19] S. Agarwal , F. Malandrino , C.-F. Chiasserini , S. De , Joint vnf placement and cpu
allocation in 5g, in: IEEE INFOCOM 2018-IEEE Conference on Computer Com-

munications, IEEE, 2018, pp. 1943–1951 .
[20] H. Hawilo , M. Jammal , A. Shami , Orchestrating network function virtualization

platform: Migration or re-instantiation? in: 2017 IEEE 6th International Con-
ference on Cloud Networking (CloudNet), IEEE, 2017, pp. 1–6 .

[21] R. Boutaba , M.A. Salahuddin , N. Limam , S. Ayoubi , N. Shahriar , F. Estrada–

Solano , O.M. Caicedo , A comprehensive survey on machine learning for net-
working: evolution, applications and research opportunities, J. Internet Serv.

Appl. 9 (1) (2018) 16 .
[22] S. Basterrech , G. Rubino , V. Snášel , Sensitivity analysis of echo state net-

works for forecasting pseudo-periodic time series, in: 2015 7th International
Conference of Soft Computing and Pattern Recognition (SoCPaR), IEEE, 2015,

pp. 328–333 .

[23] R. Al-Rfou, G. Alain, A. Almahairi, C. Angermueller, D. Bahdanau, N. Ballas, Y.
Bengio, Theano: A Python framework for fast computation of mathematical ex-

pressions. arXiv preprint arXiv: 1605.02688 , 2016.
[24] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado

et al., TensorFlow: Large-scale machine learning on heterogeneous systems,
Software available from tensorflow. org 1(2) (2015).

[25] F. Chollet, Keras, 2015.

[26] S. Rahman , T. Ahmed , M. Huynh , M. Tornatore , B. Mukherjee , Auto-scaling vnfs
using machine learning to improve qos and reduce cost, in: 2018 IEEE Interna-

tional Conference on Communications (ICC), IEEE, 2018, pp. 1–6 .
[27] Feasibility study for further advancements for E-UTRA (LTE-Advanced) , 3GPP TR

36.912 version 10.0 0, Release 10, 2011.
[28] 5G frame structure [whitepaper], Nomor Research, Munich, Germany, 2017.

[29] UP Latency in NR, 3GPP technical contribution R2-1711550, Ericsson, 2017.

[30] 5G; NR; User Equipment (UE) radio access capabilities, 3GPP TS 38.306 version
15.3.0 Release 15, 2018.

[31] F. Massimo , M. Ronald , Random networks for communication: from statistical
physics to information systems, 24, Cambridge University Press, 2008 .

[32] A. Othman , S.Y. Ameen , H. Al-Rizzo , A new channel quality indicator mapping
scheme for high mobility applications in lte systems, J. Model. Simul. Antennas

Propag. 1 (2) (2015) 38–43 .

[33] Physical layer procedures for data, 3GPP TS 38.214 version 15.3.0 Release 15,
2018.

[34] A. Schrijver , Theory of Linear and Integer Programming, John Wiley & Sons,
1998 .
[35] D. Harutyunyan , S. Nashid , B. Raouf , R. Riggio , Latency–aware service function
chain placement in 5g mobile networks, in: IEEE Conference on Network Soft-

warization, 2019 .

Tejas Subramanya received the bachelor’s degree in elec-
tronics and communications from BNM Institute of Tech-

nology, Bengaluru, India in 2010 and the M.S degree in

radio communications from Aalto University, Espoo, Fin-
land in 2014. He is currently pursuing the Ph.D. degree in

IT and Telecommunications from the University of Trento,
Italy and is also a Researcher with the WiN unit in FBK

CREATE-NET, Trento, Italy. Before completing his M.S de-
gree, he was working as a Research and Development

Engineer with Nokia Networks for 3 years. He has pub-

lished seven papers in internationally recognized confer-
ences/journals. His research interests include Multi-access

Edge Computing, programmable radio access networks,
I-enabled autonomous networking, and distributed network management and or-

hestration.

Davit Harutyunyan received the bachelors and masters

degrees (Hons.) in Telecommunication Engineering from
the National Polytechnic University of Armenia in 2011

and 2015, respectively. H e also received the Ph.D. degree
(Hons.) in Information and Communication Technology

from the University of Trento in 2019. He was a Radio Ac-

cess Network Optimization Engineer with Orange Arme-
nia. Currently, he is an expert researcher in Wireless and

Networked Systems Research Unit at FBK CREATE-NET.
His main research interests include software-defined mo-

bile networking, next-generation radio access networks,
multi-access edge computing and virtualization technolo-

gies. He has published ten papers in internationally rec-

gnized journals/conferences. He was the recipient of the Best Student Paper Award
f IEEE CNSM 2017 and IEEE NetSoft 2019.

Roberto Riggio is Head of the Wireless and Networked
System Unit at FBK CREATE-NET. His research interests in-

clude software-defined mobile networks, network slicing,
and distributed management and orchestration of net-

work services. He has published more than 100 papers
and has generated more than 3M Euro in competitive

funding. He received several awards including the IEEE

CNSM 2015 Best Paper Award. He serves in the TPC/OC
of leading conferences in networking and is associate ed-

itor of several journals including the IEEE Transactions on
Network and Service Management.

http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0015
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0015
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0015
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0015
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0015
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0016
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0016
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0016
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0016
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0016
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0016
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0016
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0017
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0017
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0017
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0017
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0017
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0017
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0017
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0017
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0017
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0017
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0017
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0017
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0018
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0018
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0018
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0018
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0018
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0019
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0019
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0019
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0019
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0020
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0020
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0020
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0020
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0020
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0020
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0020
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0020
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0021
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0021
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0021
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0021
http://arXiv:1605.02688
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0022
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0022
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0022
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0022
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0022
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0022
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0027
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0027
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0027
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0028
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0028
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0028
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0028
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0030
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0030
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0031
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0031
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0031
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0031
http://refhub.elsevier.com/S1389-1286(19)31025-4/sbref0031

	Machine learning-driven service function chain placement and scaling in MEC-enabled 5G networks
	1 Introduction
	2 Background: 5G mobile network
	3 State of the art
	3.1 Virtual network function auto-scaling.
	3.2 Service function chain placement.

	4 Machine learning-driven proactive ’UPF’ auto-scaling
	4.1 Problem description
	4.2 Multilayer perceptron (MLP)
	4.3 Modeling MLP in keras
	4.4 Collecting data and feature engineering
	4.4.1 Data collection
	4.4.2 Feature extraction
	4.4.3 Definition of classes or real-valued quantity ’Y’
	4.4.4 Feature subset selection
	4.4.5 Dataset decomposition

	4.5 Classification and regression using neual networks
	4.6 MLP Model evaluation

	5 Latency-optimal SFC placement problem description and network model
	5.1 Problem statement
	5.2 5G mobile network model
	5.3 Service function chain request model
	5.4 UE association, scheduling and delay model

	6 Problem formulation
	6.1 Integer linear programming
	6.2 Heuristic

	7 ILP and Heuristic evaluation
	7.1 Simulation environment
	7.2 Simulation results

	8 Conclusions
	Declaration of Competing Interest
	References

